Hierarchical clustering and matrix completion for the reconstruction of world input–output tables

Author:

Metulini RodolfoORCID,Gnecco GiorgioORCID,Biancalani FrancescoORCID,Riccaboni MassimoORCID

Abstract

AbstractMulti-regional input–output (I/O) matrices provide the networks of within- and cross-country economic relations. In the context of I/O analysis, the methodology adopted by national statistical offices in data collection raises the issue of obtaining reliable data in a timely fashion and it makes the reconstruction of (parts of) the I/O matrices of particular interest. In this work, we propose a method combining hierarchical clustering and matrix completion with a LASSO-like nuclear norm penalty, to predict missing entries of a partially unknown I/O matrix. Through analyses based on both real-world and synthetic I/O matrices, we study the effectiveness of the proposed method to predict missing values from both previous years data and current data related to countries similar to the one for which current data are obscured. To show the usefulness of our method, an application based on World Input–Output Database (WIOD) tables—which are an example of industry-by-industry I/O tables—is provided. Strong similarities in structure between WIOD and other I/O tables are also found, which make the proposed approach easily generalizable to them.

Funder

Università degli Studi di Salerno

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Economics and Econometrics,Social Sciences (miscellaneous),Modeling and Simulation,Statistics and Probability,Analysis

Reference55 articles.

1. Aggarwal, C.C., Reddy, C.K. (eds.): Data Clustering: Algorithms and Applications. Chapman & Hall/CRC Press, London (2014)

2. Aldstadt, J.: Spatial clustering. In: Fischer, M.M., Getis, A. (eds.) Handbook of Applied Spatial Analysis, pp. 279–300. Springer, Berlin, Heidelberg (2010)

3. Arto, I., Dietzenbacher, E., Rueda-Cantuche, J.M.: Measuring bilateral trade in terms of value added. European Commission Joint Research Centre (JRC) Technical report. https://publications.jrc.ec.europa.eu/repository/bitstream/JRC116694/jrc116694_manuscript_2019-05-28_online.pdf (2019)

4. Athey, S., Imbens, G.W.: Machine learning methods that economists should know about. Ann. Rev. Econ. 11, 685–725 (2019)

5. Bhattacharya, T., Bhandari, B., Bairagya, I.: Where are the jobs? Estimating skill-based employment linkages across sectors for the Indian economy: an input–output analysis. Struct. Change Econ. Dyn. 53, 292–308 (2020)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3