Prediction of annual CO2 emissions at the country and sector levels, based on a matrix completion optimization problem

Author:

Biancalani Francesco,Gnecco GiorgioORCID,Metulini Rodolfo,Riccaboni Massimo

Abstract

AbstractIn the recent past, annual CO$$_2$$ 2 emissions at the international level were examined from various perspectives, motivated by rising concerns about pollution and climate change. Nevertheless, to the best of the authors’ knowledge, the problem of dealing with the potential inaccuracy/missingness of such data at the country and economic sector levels has been overlooked. Thereby, in this article we apply a supervised machine learning technique called Matrix Completion (MC) to predict, for each country in the available database, annual CO$$_2$$ 2 emissions data at the sector level, based on past data related to all the sectors, and more recent data related to a subset of sectors. The core idea of MC consists in the formulation of a suitable optimization problem, namely the minimization of a proper trade-off between the approximation error over a set of observed elements of a matrix (training set) and a proxy of the rank of the reconstructed matrix, e.g., its nuclear norm. In the article, we apply MC to the imputation of (artificially) missing elements of country-specific matrices whose elements come from annual CO$$_2$$ 2 emission levels related to different sectors, after proper pre-processing at the sector level. Results highlight typically a better performance of the combination of MC with suitably-constructed baseline estimates with respect to the baselines alone. Potential applications of our analysis arise in the prediction of currently missing elements of matrices of annual CO$$_2$$ 2 emission levels and in the construction of counterfactuals, useful to estimate the effects of policy changes able to influence the annual CO$$_2$$ 2 emission levels of specific sectors in selected countries.

Funder

Scuola IMT Alti Studi Lucca

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Business, Management and Accounting (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3