Rate of Change of Large-Scale Solar-Wind Structure

Author:

Owens Mathew J.ORCID,Chakraborty Nachiketa,Turner Harriet,Lang Matthew,Riley PeteORCID,Lockwood MikeORCID,Barnard Luke A.ORCID,Chi YutianORCID

Abstract

AbstractQuantifying the rate at which the large-scale solar-wind structure evolves is important for both understanding the physical processes occurring in the corona and for space-weather forecast improvement. Models of the global corona and heliosphere typically assume that the ambient solar-wind structure is steady and corotates with the Sun, which is generally expected to be more valid at solar minimum than solar maximum, but this has not been well tested. Similarly, assimilation of solar-wind observations into models requires quantitative knowledge of how the reliability of the observations changes with age. In this study we examine 25 years of near-Earth in situ solar-wind observations and 45 years of observation-constrained solar-wind simulations to determine how much the 1-AU solar-wind speed, $V$ V , and radial magnetic-field component, $B_{R}$ B R , vary between consecutive Carrington rotations (CRs). For the in situ spacecraft observations, we find the rate of change of $V$ V and $B_{R}$ B R is similar during solar maximum and minimum, particularly when transient interplanetary coronal mass ejections are removed from the data. This is somewhat counter to expectations. Conversely, the rate of change in $V$ V and $B_{R}$ B R obtained from global heliospheric simulations is strongly correlated with the solar cycle, with the corona and heliosphere being more variable at solar maximum, as expected. Limiting the analysis of the simulations to the solar equatorial region, however, strongly reduces the difference between solar maximum and minimum, bringing the result into close agreement with the in situ observations. This latitudinal sensitivity is explained in terms of the global solar-wind structure over the solar cycle. For the purposes of assimilating in-ecliptic solar-wind observations, we suggest the uncertainty in $V$ V should increase by around 3 km s−1 per day since the observation was made and 0.1 nT per day for $B_{R}$ B R . For observations made at higher latitude, the effect of observation age will be solar-cycle dependent.

Funder

Science and Technology Facilities Council

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3