Annual Variations in the Near-Earth Solar Wind

Author:

Owens Mathew J.ORCID,Lockwood MikeORCID,Barnard Luke A.ORCID,Yardley Stephanie L.,Hietala HeliORCID,LaMoury Adrian T.ORCID,Vuorinen LauraORCID

Abstract

AbstractEarth’s orbit and rotation produces systematic variations in geomagnetic activity, most notably via the changing orientation of the dayside magnetospheric magnetic field with respect to the heliospheric magnetic field (HMF). Aside from these geometric effects, it is generally assumed that the solar wind in near-Earth is uniformly sampled. But systematic changes in the intrinsic solar wind conditions in near-Earth space could arise due to the annual variations in Earth heliocentric distance and heliographic latitude. In this study, we use 24 years of Advanced Composition Explorer data to investigate the annual variations in the scalar properties of the solar wind, namely the solar wind proton density, the radial solar wind speed and the HMF intensity. All parameters do show some degree of systematic annual variation, with amplitudes of around 10 to 20%. For HMF intensity, the variation is in phase with the Earth’s heliocentric distance variation, and scaling observations for distance largely explains the observed variation. For proton density and solar wind speed, however, the phase of the annual variation is inconsistent with Earth’s heliocentric distance. Instead, we attribute the variations in speed and density to Earth’s heliographic latitude variation and systematic sampling of higher speed solar wind at higher latitudes. Indeed, these annual variations are most strongly ordered at solar minimum. Conversely, combining scalar solar wind parameters to produce estimates of dynamic pressure and potential power input to the magnetosphere results in solar maximum exhibiting a greater annual variation, with an amplitude of around 40%. This suggests Earth’s position in the heliosphere makes a significant contribution to annual variations in space weather, in addition to the already well-studied geometric effects.

Funder

Science and Technology Facilities Council

Royal Society

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3