Flare Index Prediction with Machine Learning Algorithms
Author:
Funder
chinese academy of sciences
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Astronomy and Astrophysics
Link
https://link.springer.com/content/pdf/10.1007/s11207-021-01895-1.pdf
Reference70 articles.
1. Ahmed, O.W., Qahwaji, R., Colak, T., Higgins, P.A., Gallagher, P.T., Bloomfield, D.S.: 2013, Solar flare prediction using advanced feature extraction, machine learning, and feature selection. Solar Phys. 283(1), 157. DOI. ADS.
2. Baker, D.N., McPherron, R.L., Cayton, T.E., Klebesadel, R.W.: 1990, Linear prediction filter analysis of relativistic electron properties at $6.6~\text{R}_{E}$. J. Geophys. Res. 95(A9), 15133. DOI. ADS.
3. Benvenuto, F., Piana, M., Campi, C., Massone, A.M.: 2018, A hybrid supervised/unsupervised machine learning approach to solar flare prediction. Astrophys. J. 853(1), 90. DOI. ADS.
4. Bhattacharjee, S., Alshehhi, R., Dhuri, D.B., Hanasoge, S.M.: 2020, Supervised convolutional neural networks for classification of flaring and nonflaring active regions using line-of-sight magnetograms. Astrophys. J. 898, 98. DOI. ADS.
5. Bobra, M.G., Couvidat, S.: 2015, Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798(2), 135. DOI. ADS.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The influence of magnetic field parameters and time step on deep learning models of solar flare prediction;Astrophysics and Space Science;2024-05
2. Survey of Magnetic Field Parameters Associated with Large Solar Flares;The Astrophysical Journal;2024-03-28
3. Prediction of solar energetic events impacting space weather conditions;Advances in Space Research;2024-02
4. Verification of Short-term Forecast for <i>F</i><sub>10.7 </sub>Index and <i>Ap</i> Index;Chinese Journal of Space Science;2024
5. Deep neural networks of solar flare forecasting for complex active regions;Frontiers in Astronomy and Space Sciences;2023-06-23
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3