Estimating the Open Solar Flux from In-Situ Measurements
-
Published:2022-07
Issue:7
Volume:297
Page:
-
ISSN:0038-0938
-
Container-title:Solar Physics
-
language:en
-
Short-container-title:Sol Phys
Author:
Frost Anna Marie,Owens Mathew,Macneil Allan,Lockwood Mike
Abstract
AbstractA fraction of the magnetic flux threading the solar photosphere extends to sufficient heliocentric distances that it is dragged out by the solar wind. Understanding this open solar flux (OSF) is central to space weather, as the OSF forms the heliosphere, magnetically connects the Sun to the planets, and dominates the motion of energetic particles. Quantification of OSF is also a key means of verifying global coronal models. However, OSF estimates derived from extrapolating the magnetic field from photospheric observations are consistently smaller than those based on heliospheric magnetic field (HMF) measurements, by around a factor two. It is therefore important to understand the uncertainties in estimating OSF from in-situ HMF measurements. This requires both an assumption of latitudinal invariance in the radial component of the HMF in the heliosphere, and that structures without an immediate connection to the Sun, such as local magnetic field inversions (or ‘switchbacks’), can be correctly accounted for. In this study, we investigate the second assumption. Following an established methodology, we use in-situ electron and magnetic data to determine the global topology of the HMF and correct for inversions that would otherwise lead to an overestimation of the OSF. The OSF estimation is applied to the interval 1994 – 2021 and combines measurements from the Wind and ACE spacecraft. This extends the time range over which this methodology has previously been applied from 13 years (1998 – 2011) to 27 years. We find that inversions cannot fully explain the discrepancy between heliospheric and photospheric OSF estimations, with the best heliospheric estimate of OSF still, on average, a factor 1.6 higher than the values extrapolated from photospheric observations.
Funder
Science and Technology Facilities Council
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Astronomy and Astrophysics
Reference59 articles.
1. Anderson, B.R., Skoug, R.M., Steinberg, J.T., McComas, D.J.: 2012, Variability of the solar wind suprathermal electron strahl. J. Geophys. Res. 117(A4), A04107 DOI. 2. Badman, S.T., Bale, S.D., Rouillard, A.P., Bowen, T.A., Bonnell, J.W., Goetz, K., Harvey, P.R., MacDowall, R.J., Malaspina, D.M., Pulupa, M.: 2021, Measurement of the open magnetic flux in the inner heliosphere down to 0.13 au. Astron. Astrophys. 650, A18 DOI. 3. Bale, S.D., Badman, S.T., Bonnell, J.W., Bowen, T.A., Burgess, D., Case, A.W., Cattell, C.A., Chandran, B.D.G., Chaston, C.C., Chen, C.H.K., Drake, J.F., de Wit, T.D., Eastwood, J.P., Ergun, R.E., Farrell, W.M., Fong, C., Goetz, K., Goldstein, M., Goodrich, K.A., Harvey, P.R., Horbury, T.S., Howes, G.G., Kasper, J.C., Kellogg, P.J., Klimchuk, J.A., Korreck, K.E., Krasnoselskikh, V.V., Krucker, S., Laker, R., Larson, D.E., MacDowall, R.J., Maksimovic, M., Malaspina, D.M., Martinez-Oliveros, J., McComas, D.J., Meyer-Vernet, N., Moncuquet, M., Mozer, F.S., Phan, T.D., Pulupa, M., Raouafi, N.E., Salem, C., Stansby, D., Stevens, M., Szabo, A., Velli, M., Woolley, T., Wygant, J.R.: 2019, Highly structured slow solar wind emerging from an equatorial coronal hole. Nature, 576, 237 DOI. 4. Balogh, A., Forsyth, R.J., Lucek, E.A., Horbury, T.S., Smith, E.J.: 1999, Heliospheric magnetic field polarity inversions at high heliographic latitudes. Geophys. Res. Lett. 26(6), 631. DOI. 5. Beckers, J.M.: 1968, Principles of operation of solar magnetographs. Solar Phys. 5(1), 15. DOI.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|