A Uniform Series of Low-Latitude Coronal Holes in 1973–2018

Author:

Hamada A.ORCID,Asikainen T.,Mursula K.

Abstract

AbstractCoronal holes (CHs) are regions in the solar corona characterized by plasma density lower than in the surrounding quiet Sun. Therefore they appear dark in images of the solar atmosphere made, e.g., in extreme ultraviolet (EUV). Identifying CHs on solar images is difficult since CH boundaries are not sharp, but typically obscured by magnetic structures of surrounding active regions. Moreover, the areas, shapes, and intensities of CHs appear differently in different wavelengths. Coronal holes have been identified both visually by experienced observers and, more recently, by automated detection methods using different techniques. In this article, we apply a recent, robust CH identification algorithm to a new set of homogenized EUV synoptic maps based on four EUV lines measured by the Solar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT) in 1996–2018 and the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) in 2010–2018 and create corresponding CH synoptic maps. We also use CHs of the hand-drawn McIntosh archive (McA) from 1973–2009 to extend the CH database to earlier times. We discuss the success of the four EUV lines to find CHs at high or low latitudes, and confirm that the combined EIT 195 Å/AIA 193 Å series applies best for both polar and low-latitude CH detection. While the polar CH detection suffers from the vantage-point limitation, the low-latitude CH areas extracted from this line correlate with the McA CH data very well. Using the simultaneous measurements between EIT and McA and EIT and AIA, we scale the different data series to the same level and form the longest uniform series of low-latitude CHs in 1973–2018. We find that, while the solar cycle maxima of low-latitude CHs in the descending phase of Solar Cycles 21–23 attain roughly similar values, the corresponding maximum during Solar Cycle 24 is reduced by a factor of two. This suggests that magnetic flux emergence is crucial for the formation of low-latitude CHs.

Funder

Academy of Finland

University of Oulu including Oulu University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3