The First Survey of Quiet Sun Features Observed in Hard X-Rays with NuSTAR

Author:

Paterson Sarah,Hannah Iain G.,Grefenstette Brian W.,Hudson Hugh S.,Krucker Säm,Glesener Lindsay,White Stephen M.,Smith David M.

Abstract

AbstractWe present the first survey of quiet Sun features observed in hard X-rays (HXRs), using the Nuclear Spectroscopic Telescope ARray (NuSTAR), a HXR focusing optics telescope. The recent solar minimum, combined with NuSTAR’s high sensitivity, has presented a unique opportunity to perform the first HXR imaging spectroscopy on a range of features in the quiet Sun. By studying the HXR emission of these features, we can detect or constrain the presence of high temperature (> 5 MK) or non-thermal sources, to help understand how they relate to larger, more energetic solar phenomena, and determine their contribution to heating the solar atmosphere. We report on several features observed in the 28 September 2018 NuSTAR full-disk quiet Sun mosaics, the first of the NuSTAR quiet Sun observing campaigns, which mostly include steady features of X-ray bright points and an emerging flux region, which later evolved into an active region, as well as a short-lived jet. We find that the features’ HXR spectra are well fitted with isothermal models with temperatures ranging between 2.0 – 3.2 MK. Combining the NuSTAR data with softer X-ray emission from Hinode/XRT and EUV from SDO/AIA, we recover the differential emission measures, confirming little significant emission above 4 MK. The NuSTAR HXR spectra allow us to constrain the possible non-thermal emission that would still be consistent with a null HXR detection. We found that for only one of the features (the jet) was there a potential non-thermal upper limit capable of powering the heating observed. However, even here, the non-thermal electron distribution had to be very steep (effectively mono-energetic) with a low energy cut-off between 3 – 4 keV.

Funder

Science and Technology Facilities Council

Royal Society

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3