1. Scott Aaronson & Andrew Drucker (2009). Impagliazzo’s worlds in arithmetic complexity. Talk presented at the Workshop on Complexity and Cryptography: Status of Impagliazzo’s Worlds, Center for Computational Intractability, Princeton, NJ, June 5, 2009. Slides available at http://www.scottaaronson.com/talks/arith.ppt .
2. B. Adsul, Milind Sohoni & K. V. Subrahmanyam (2009). Quantum deformations of the restriction of $${GL_{mn}(\mathbb{C})}$$ G L m n ( C ) -modules to $${GL_m(\mathbb{C}) \times GL_n(\mathbb{C})}$$ G L m ( C ) × G L n ( C ) . arXiv:0905.0094 [math.RT].
3. Manindra Agrawal (2005). Proving lower bounds via pseudo-random generators. In FSTTCS 2005: Foundations of software technology and theoretical computer science, volume 3821 of Lecture Notes in Computer Science, 92–105. Springer, Berlin.
4. Manindra Agrawal & V. Vinay (2008). Arithmetic Circuits: A Chasm at Depth Four. In FOCS ’08: 49th, Annual IEEE Symposium on Foundations of Computer Science 67–75. IEEE Computer Society.
5. Eric Allender (1999). The permanent requires large uniform threshold circuits. Chicago J. Theoret. Comput. Sci. Art. 7.