Random arithmetic formulas can be reconstructed efficiently

Author:

Gupta Ankit,Kayal Neeraj,Qiao Youming

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,General Mathematics,Theoretical Computer Science

Reference55 articles.

1. Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi & Michael E. Saks (2008). Minimizing Disjunctive Normal Form Formulas and AC0 Circuits Given a Truth Table. SIAM J. Comput. 38(1), 63–84.

2. Maria Emilia Alonso, Teo Mora & Mario Raimondo (1990). Local Decomposition Algorithms. In AAECC, Shojiro Sakata, editor, volume 508 of Lecture Notes in Computer Science, 208–221. Springer. ISBN 3-540-54195-0.

3. Vikraman Arvind, Partha Mukhopadhyay & Srikanth Srinivasan (2010). New Results on Noncommutative and Commutative Polynomial Identity Testing. Computational Complexity 19(4), 521–558.

4. Matthias Aschenbrenner (2004). Ideal membership in polynomial rings over the integers. J. Amer. Math. Soc. 7, 407–411.

5. Matthias Aschenbrenner (2011). Algorithms for computing saturations of ideals in finitely generated commutative rings: Appendix to: Automorphisms mapping a point into a subvariety, J. Algebraic Geom. 20 (2011), 785-794.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Derandomization and absolute reconstruction for sums of powers of linear forms;Theoretical Computer Science;2021-10

2. Reconstruction algorithms for low-rank tensors and depth-3 multilinear circuits;Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing;2021-06-15

3. Learning sums of powers of low-degree polynomials in the non-degenerate case;2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS);2020-11

4. Implementing geometric complexity theory: on the separation of orbit closures via symmetries;Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing;2020-06-06

5. Sparse multivariate polynomial interpolation on the basis of Schubert polynomials;computational complexity;2016-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3