Sparse multivariate polynomial interpolation on the basis of Schubert polynomials

Author:

Mukhopadhyay Priyanka,Qiao Youming

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Computational Theory and Mathematics,General Mathematics,Theoretical Computer Science

Reference39 articles.

1. Vikraman Arvind, Partha Mukhopadhyay, Srinivasan Srikanth (2010) New Results on Noncommutative and Commutative Polynomial Identity Testing. Computational Complexity 19(4): 521–558

2. Sami Assaf, Nantel Bergeron & Frank Sottile (2014). A combinatorial proof that Schubert vs. Schur coefficients are nonnegative. arXiv preprint arXiv:1405.2603 .

3. Alexander Barvinok, Fomin Sergey (1997) Sparse interpolation of symmetric polynomials. Advances in Applied Mathematics 18(3): 271–285

4. Michael Ben-Or & Prasoon Tiwari (1988). A Deterministic Algorithm for Sparse Multivariate Polynominal Interpolation (Extended Abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2–4, 1988, Chicago, Illinois, USA, 301–309.URL http://doi.acm.org/10.1145/62212.62241 .

5. Nantel Bergeron, Billey Sara (1993) RC-graphs and Schubert polynomials. Experimental Mathematics 2(4): 257–269

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. What is a combinatorial interpretation?;Proceedings of Symposia in Pure Mathematics;2024

2. Positivity of the Symmetric Group Characters Is as Hard as the Polynomial Time Hierarchy;International Mathematics Research Notices;2023-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3