K[(CuII,MnII,MnIII)2(TeO3)3]∙2H2O, the first zemannite-type structure based on a Jahn-Teller-distorted framework

Author:

Eder FelixORCID,Miletich RonaldORCID,Weil MatthiasORCID

Abstract

AbstractSynthetic single crystals of K[(CuII,MnII,MnIII)2(TeO3)3]·2H2O were obtained from an overconcentrated alkaline aqueous solution in the system K2O-MnO-CuO-TeO2 under hydrothermal conditions at T ≤ 220 °C. Subeuhedral single crystals have been investigated by means of single-crystal X-ray diffraction. The crystal structure of this new zemannite-type representative adopts a monoclinic twofold superstructure. The doubling of the unit-cell volume is accompanied by a hexagonal-to-monoclinic symmetry reduction, resulting in threefold twinning with individual crystal domains following the space group symmetry P21. Refinements of site-occupation factors and the evaluation of bond valences suggest a distribution of di- and trivalent cations at the octahedrally coordinated M sites with a ratio (CuII + MnII):MnIII approximating 1:1. Based on arguments about the cation sizes and the individual bond valence sums, a distribution of CuII1–xMnIIIx and MnIIx MnIII1–x at each two of the four M sites can be assumed with x between ~ 0.14 and ~ 0.50. The K+ cations and H2O molecules inside the channels are located off the central channel axis. In contrast to most other known zemannite-type phases, the extra-framework atoms show full occupancies and are not disordered. The distribution of the channel contents supports the anisotropic deformation of the surrounding framework, which follows the local symmetry reduction as required for the Jahn-Teller distortion of the octahedrally coordinated M sites within the framework. The arrangement of the deformed channels can be understood as the origin of the existing superstructure.

Funder

TU Wien

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Reference40 articles.

1. Bosi F (2014) Bond valence at mixed occupancy sites. I Regular Polyhedra Acta Crystallogr B70:864–870

2. Brandenburg K (2016) Diamond (Version 4.0). Crystal and Molecular Structure Visualization

3. Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197

4. Brown ID (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press, Oxford

5. Bruker (2021a) APEX-4. Bruker AXS Inc, Madison, Wisconsin, USA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3