Abstract
AbstractDuring a systematic study on formation conditions of new compounds with zemannite-type structures, crystals of ten new oxidotellurate(IV) phases were grown under hydrothermal conditions, partially by employing a drastic reduction of the water content. The crystal structures of the obtained phases were determined by single-crystal X-ray diffraction. Na2[Ni2(TeO3)3]·2.5H2O, K2[Ni2(TeO3)3]·H2O, K2[Zn2(TeO3)3]·2H2O, Rb1.25[Co2(TeO3)3]·1.5H2O and Rb1.24[Mn2(TeO3)3]·2H2O exhibit a unit-cell with hexagonal symmetry (Z = 2, a ≈ 9.3 Å, c ≈ 7.7 Å), in which most of the other compounds with a zemannite-type structure are known to crystallize. Relative to this unit-cell, K2[Cu2(TeO3)3]·2H2O exhibits a twofold superstructure, K2[Co2(TeO3)3]·2.5H2O a twofold superstructure with an additional incommensurate modulation, Na2[Cu2(TeO3)3]·1.5H2O a threefold superstructure, and Rb1.5[Mn2(TeO3)3]·1.25H2O and Cs[Mn2(TeO3)3]·H2O a fourfold superstructure. Disorder of the alkali metal cations and crystal water molecules in the channels as well as variable water contents complicate modelling and structure refinement.
Publisher
Springer Science and Business Media LLC
Subject
Geochemistry and Petrology,Geophysics
Reference45 articles.
1. Brandenburg K (2016) DIAMOND (Version 4.0). Crystal and molecular structure visualization. Crystal Impact. Bonn, Germany
2. Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197
3. Brown ID (2002) The chemical bond in inorganic chemistry: The Bond Valence Model. Oxford University Press, Oxford
4. Bruker (2016) SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
5. Bruker (2021) APEX-4. Bruker AXS Inc., Madison, Wisconsin, USA
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献