Carbonatite-melilitite-phosphate immiscible melts from the aragonite stability field entrained from the mantle by a Pliocene basalt

Author:

Hurai Vratislav,Huraiová Monika,Habler Gerlinde,Horschinegg Monika,Milovský Rastislav,Milovská Stanislava,Hain Miroslav,Abart RainerORCID

Abstract

AbstractA plagioclase megacryst containing composite crystal-glass inclusions was ejected in a Pliocene basaltic diatreme in the Carpathian back-arc basin (Pannonian Basin). The megacryst grew from phonolitic melt, relics of which are preserved in the crystal-glass inclusions. Most of the pristine melt has undergone substantial compositional resetting by interaction with several batches of a low-viscosity carbonated, P-rich melilitite melt, which infiltrated and largely replaced the original inclusion content. The melilitite melt also caused partial resorption of the host megacryst and crystallisation of new calcic plagioclase forming stringers and palisades. A P-rich calcic carbonatite melt exsolved from the melilitite and later crystallised to aragonite at ~ 800 °C and 1.9 GPa. The phosphate melt fraction exsolved from the carbonatite and solidified as CO32−-rich A-B type apatite. At a very late evolutionary stage, K- and Si-rich fluids caused potassic and silicic alteration of the solidified melilitite glass along cracks and interfaces between calcic carbonate globules and glass at temperatures below 680 °C. The oxygen isotope composition of the plagioclase megacryst (6.2 ‰ V-SMOW; Vienna Standard Mean Ocean Water) and the 87Sr/86Sr isotope ratio of carbonates in the inclusions (0.7034) are consistent with a mantle-derived melt. 87Sr/86Sr isotope ratios (0.7047–0.7051) in interstitial carbonates from associated syenite and carbonatite xenoliths indicate a metasomatised mantle source contaminated with radiogenic crustal material or altered marine carbonate. The O-isotope ratios in the carbonates, 22.7 ± 0.6 ‰ V-SMOW in calcite and 23.6 ± 0.7 ‰ V-SMOW in aragonite, are also consistent with a sedimentary precursor. Contrasting δ13C values in the calcite, -12.7 ± 0.5 ‰ V-PDB (Vienna PeeDee Belemnite), and the aragonite (-4.6 ± 0.5 ‰ V-PDB) indicate low-temperature modification of calcite assisted by $$\delta$$ δ 13C-depleted CO2 and preservation of primary magmatic $$\delta$$ δ 13C values in aragonite. The microstructural and geochemical evidence points towards heterogeneous silicate-carbonate melt fractions generated during the metasomatism and partial melting of a supra-subduction mantle wedge.

Funder

University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3