The genesis of calcite and dolomite carbonatite-forming magma by liquid immiscibility: a critical appraisal

Author:

Gittins John,Mitchell Roger H.ORCID

Abstract

AbstractLiquid immiscibility has become the preferred mode of genesis for the carbonatite rocks, which commonly, but not exclusively, accompany silicate rocks in alkaline-rock complexes. This concept has been universally based on the presumption that nephelinitic and phonolitic magmas can evolve to a stage where two conjugate immiscible liquids separate. It is assumed that these two liquids separate quickly, or even instantaneously, into discrete bodies of magma capable of being intruded or extruded with subsequent independent crystallization. Supporting evidence generally given is: alleged consanguinity as discrete occurrence of the two rock types; similarity of radiogenic isotope ratios; trace element contents similar to those predicted from experimentally derived partition coefficients. We do not accept that a general case for liquid immiscibility has been demonstrated; although we do accept that silicate and carbonate liquids are inherently immiscible, we maintain that they are not conjugate in a petrogenetic context. We have reviewed and critically examined the experimental data purporting to establish liquid immiscibility and find that when applied to natural rocks, they are based on inappropriate experimental designs, which are not relevant to the genesis of calcite or dolomite carbonatites, although they might have some relevance to Oldoinyo Lengai nyerereite–gregoryite lavas. The design of these experiments guarantees immiscibility and ensures that the carbonate liquids formed will be calcitic or sodium-rich. We dispute the validity of comparing the trace element contents of natural rocks, which in many instances do not represent liquid compositions, to experimentally determine partition coefficients. We consider that experimental design inadequacies, principally assuming but not proving, that the liquids involved are conjugate, indicate that these coefficients are merely an expression of the preference of certain elements for particular liquids, regardless of how the liquids formed. Proof of consanguinity in alkaline complexes requires more accurate age determinations on the relevant rock types than has generally been the case, and in most complexes, consanguinity can be discounted. We dispute the contention that melt inclusions represent parental melts, although they might elucidate the character of magmas undergoing fractional crystallization from magmatic to carbothermal stages. Radiogenic isotope data are shown to be too widely variable to support a case for liquid immiscibility. We address the contention that calcite cannot crystallize from a dolomitic liquid formed by direct mantle melting, and must therefore have crystallized from a calcite carbonate liquid generated by liquid immiscibility, and demonstrate that it is an unsupported hypothesis as calcite can readily crystallize from dolomitic liquids. We observe that, because immiscible dolomite liquids have never been produced experimentally, the liquid immiscibility proposition could at best be applied only to calcite carbonatites, thus leaving unexplained the large number of dolomite carbonatites and those of either type, which are not accompanied by alkaline silicate rocks. The assumed bimodality of alkaline-rock carbonatite complexes is considered to be fallacious and no actual geological or petrographic evidence for immiscibility processes is evident in these complexes. Several examples of alkaline rock carbonatite complexes for which immiscibility has been proposed are evaluated critically and shown to fail in attempts to establish them as exemplifying immiscibility. We conclude that no actual geological or experimental data exist to establish liquid immiscibility being involved in the genesis of calcite or dolomite carbonatite-forming magmas.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3