A tangled web: global review of fishing interactions with rhino rays

Author:

Pytka J. M.ORCID,Kyne P. M.ORCID,Carlson J. K.ORCID,Wosnick N.ORCID,Jabado R. W.ORCID

Abstract

AbstractRhino rays (Order Rhinopristiformes) are one of the most threatened vertebrate groups. Despite overfishing being recognised as the greatest threat to this group, a comprehensive assessment of the fisheries and types of fishing gear that rhino rays interact with is lacking. We reviewed published and grey literature (n = 116 references) to evaluate interactions between rhino rays and fisheries, determine gear types most responsible for their capture, and species for which most interactions occur by region. Interactions (n = 420) were reported from 37 of 88 range states, for 52 of 68 known species. Combined, 59% of the literature reported interactions from trawlers and gillnets. Wedgefishes (Rhinidae) were the most reported family (29%) and bowmouth guitarfish (Rhina ancylostomus) the most reported species (9.5%). Asia accounted for half of interactions (n = 211), with 67% of the literature from unspecified gear (e.g., mixed landings), masking gear-specific interactions. Data quality was variable, with the highest resolution in countries with lower species diversity and where species are least imperiled (e.g., Australia). Discard mortality and physiological effects of capture are poorly known with data available for 25% of species (almost exclusively from Australia and the Americas). While additional data are urgently required to quantify the true extent of rhino ray catch globally, reducing fisheries mortality is a priority and key to address declining populations. Recommendations include prioritizing spatial management in critical habitats (e.g., nursery areas), expansion in the use of proven bycatch reduction devices, encouraging safe release and handling, and addressing drivers of retention and trade.

Funder

Save Our Seas Foundation

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3