Post‐capture recovery is mediated by shifts in allostatic and metabolic dynamics in a threatened and endemic rhino ray

Author:

Wosnick N.12ORCID,Giareta E. P.12,de Rios L. Paula2,Leite R. D.23

Affiliation:

1. Programa de Pós‐graduação em Zoologia Universidade Federal do Paraná – Curitiba Curitiba Brazil

2. Associação MarBrasil – Pontal do Sul Pontal do Paraná Brazil

3. Programa de Pós‐graduação em Ecologia e Conservação Universidade Federal do Paraná – Curitiba Curitiba Brazil

Abstract

AbstractUnderstanding how animals respond to stressors is critical for effective conservation. The present study aimed to evaluate the physiological recovery of the Shortnose Guitarfish, Zapteryx brevirostris after being incidentally captured by artisanal fleets and compared it to guitarfish with delayed mortality. Moreover, the study aimed to test the efficiency of a rehabilitation protocol for the species. To this end, individuals landed alive were transported to the rehabilitation facilities and kept in tanks under monitoring for 3 days. Physiological markers indicative of allostatic overload (i.e., lactate and phosphorus) and energy metabolism (i.e., glucose and β‐hydroxybutyrate) were assessed in the serum of the studied guitarfish: right after gillnet capture (i.e., post‐capture) and on rehabilitation (i.e., pre‐monitoring, post‐monitoring, as well as guitarfish that deceased during monitoring – post‐mortem). Results showed that the transportation and additional handling employed in the rehabilitation protocol did not increase the stress response, pointing to its potential efficacy in recovering debilitated, incidentally caught guitarfish before release. As for recovery success of monitored guitarfish, lactic acidosis was fully reverted after a 3‐day rest period, as was allostatic overload. The same was not observed in recovery failure. Correlation tests revealed key relationships between physiological markers, shedding light on how physiological pathways help guitarfish cope with capture and handling stress. This study highlights the valuable application of conservation physiology principles to fisheries management of this endemic and threatened guitarfish species.

Funder

Petrobras

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3