Study on Feature Selection Methods for Depression Detection Using Three-Electrode EEG Data
Author:
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Computer Science Applications,General Biochemistry, Genetics and Molecular Biology
Link
http://link.springer.com/article/10.1007/s12539-018-0292-5/fulltext.html
Reference32 articles.
1. World Health Organization, 2011, Available from: http://www.who.int/mental_health/management/depression/en/
2. Beck AT, Steer RA, Carbin MG (1988) Psychometric properties of the beck depression inventory: Twenty-five years of evaluation. Clin Psychol Rev 8(1):77–100
3. Association A. P. and Association A. P. Diagnostic and statistical manual of mentaldisorders (DSM). American Psychiatric Association, Washington. 1994: pp 143–147
4. Chattopadhyay S, Kaur P, Rabhi F et al (2012) Neural network approaches to grade adult depression. J Med Syst 36(5):2803–2815
5. Hosseinifard B, Moradi MH, Rostami R (2013) Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput Methods Progr Biomed 109(3):339–345
Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A multi-source window-dependent transfer learning approach for COVID-19 vaccination rate prediction;Engineering Applications of Artificial Intelligence;2024-10
2. Spatio-temporal features based deep learning model for depression detection using two electrodes;Measurement Science and Technology;2024-05-29
3. A Comprehensive Review on Synergy of Multi-Modal Data and AI Technologies in Medical Diagnosis;Bioengineering;2024-02-25
4. Physiological Electrosignal Asynchronous Acquisition Technology: Insight and Perspectives;IEEE Transactions on Computational Social Systems;2024-02
5. Verbesserung der Erkennung des Arbeitsgedächtnisses von Demenz-Patienten mithilfe von Entropie-basierten Merkmalen und dem Local Tangent Space Alignment Algorithmus;Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3