Hybrid deep boosting ensembles for histopathological breast cancer classification
Author:
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,Applied Microbiology and Biotechnology,Bioengineering,Biotechnology
Link
https://link.springer.com/content/pdf/10.1007/s12553-022-00709-z.pdf
Reference56 articles.
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.
2. Ginsburg O, Yip C-H, Brooks A, Cabanes A, Caleffi M, Yataco JAD, Gyawali B, McCormack V, de Anderson MM, Mehrotra R, Mohar A, Murillo R, Pace LE, Paskett ED, Romanoff A, Rositch AF, Scheel JR, Schneidman M, Unger-Saldaña K, Vanderpuye V, Wu T-Y, Yuma S, Dvaladze A, Duggan C, Anderson BO. Breast cancer early detection: a phased approach to implementation. Cancer. 2020;126:2379–93. https://doi.org/10.1002/cncr.32887.
3. Hela B, Hela M, Kamel H, Sana B, Najla M. Breast cancer detection: a review on mammograms analysis techniques. In: 10th International Multi-Conferences on Systems, Signals Devices 2013 (SSD13); 2013. p. 1–6. https://doi.org/10.1109/SSD.2013.6563999.
4. Bukhari MH, Akhtar ZM. Comparison of accuracy of diagnostic modalities for evaluation of breast cancer with review of literature. Diagn Cytopathol. 2009;37:416–24. https://doi.org/10.1002/dc.21000.
5. Giess CS, Frost EP, Birdwell RL. Difficulties and errors in diagnosis of breast neoplasms. Semin Ultrasound CT MRI. 2012;33:288–99. https://doi.org/10.1053/j.sult.2012.01.007.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A framework for classifying breast cancer via heterogenetic attention mechanism and optimized feature selection;Intelligent Data Analysis;2024-08-01
2. Evaluating and comparing bagging and boosting of hybrid learning for breast cancer screening;Scientific African;2024-03
3. New design strategies of deep heterogenous convolutional neural networks ensembles for breast cancer diagnosis;Multimedia Tools and Applications;2024-01-12
4. A Novel Bagged Ensemble Approach for Accurate Histopathological Breast Cancer Classification Using Transfer Learning and Convolutional Neural Networks;Lecture Notes in Computer Science;2024
5. LightGBM: A Leading Force in Breast Cancer Diagnosis Through Machine Learning and Image Processing;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3