Error Analysis of Pretrained Language Models (PLMs) in English-to-Arabic Machine Translation

Author:

Al-Khalifa HendORCID,Al-Khalefah Khaloud,Haroon Hesham

Abstract

AbstractAdvances in neural machine translation utilizing pretrained language models (PLMs) have shown promise in improving the translation quality between diverse languages. However, translation from English to languages with complex morphology, such as Arabic, remains challenging. This study investigated the prevailing error patterns of state-of-the-art PLMs when translating from English to Arabic across different text domains. Through empirical analysis using automatic metrics (chrF, BERTScore, COMET) and manual evaluation with the Multidimensional Quality Metrics (MQM) framework, we compared Google Translate and five PLMs (Helsinki, Marefa, Facebook, GPT-3.5-turbo, and GPT-4). Key findings provide valuable insights into current PLM limitations in handling aspects of Arabic grammar and vocabulary while also informing future improvements for advancing English–Arabic machine translation capabilities and accessibility.

Publisher

Springer Science and Business Media LLC

Reference39 articles.

1. Zaugg IA, Hossain A, Molloy B. Digitally-disadvantaged languages. Internet Policy Rev J Internet Regul. 2022;11(2):1–11.

2. Patil A, Joshi I, Kadam D. PICT@WAT 2022: neural machine translation systems for indic languages. In: Proceedings of the 9th workshop on Asian Translation, Gyeongju, Republic of Korea: international conference on computational linguistics. 2022. pp. 106–110. https://aclanthology.org/2022.wat-1.13. Accessed 20 Dec 2023.

3. Chen K, Wang R, Utiyama M, Sumita E. Integrating prior translation knowledge into neural machine translation. IEEEACM Trans Audio Speech Lang Process. 2022;30:330–9. https://doi.org/10.1109/TASLP.2021.3138714.

4. Akan MF, Karim MR, Chowdhury AMK. An analysis of Arabic–English translation: problems and prospects. Adv Lang Lit Stud. 2019;10(1):58–65. https://doi.org/10.7575/aiac.alls.v.10n.1p.58.

5. Mamoori MMA, Tarish AH, Hasani SA. Difficulties of translation and evaluative idioms in English and Arabic. Int J Health Sci. 2022. https://doi.org/10.53730/ijhs.v6nS5.10039.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3