Abstract
Abstract
We study hard 1 → 2 final-state parton splittings in the medium, and put special emphasis on calculating the Wilson line correlators that appear in these calculations. As partons go through the medium their color continuously rotates, an effect that is encapsulated in a Wilson line along their trajectory. When calculating observables, one typically has to calculate traces of two or more medium-averaged Wilson lines. These are usually dealt with in the literature by invoking the large-Nc limit, but exact calculations have been lacking in many cases. In our work, we show how correlators of multiple Wilson lines appear, and develop a method to calculate them numerically to all orders in Nc. Initially, we focus on the trace of four Wilson lines, which we develop a differential equation for. We will then generalize this calculation to a product of an arbitrary number of Wilson lines, and show how to do the exact calculation numerically, and even analytically in the large-Nc limit. Color sub-leading corrections, that are suppressed with a factor $$ {N}_c^{-2} $$
N
c
−
2
relative to the leading scaling, are calculated explicitly for the four-point correlator and we discuss how to extend this method to the general case. These results are relevant for high-pT jet processes and initial stage physics at the LHC.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference42 articles.
1. D. d’Enterria, Jet quenching, Landolt-Bornstein 23 (2010) 471 [arXiv:0902.2011] [INSPIRE].
2. A. Majumder and M. Van Leeuwen, The Theory and Phenomenology of Perturbative QCD Based Jet Quenching, Prog. Part. Nucl. Phys. 66 (2011) 41 [arXiv:1002.2206] [INSPIRE].
3. Y. Mehtar-Tani, J.G. Milhano and K. Tywoniuk, Jet physics in heavy-ion collisions, Int. J. Mod. Phys. A 28 (2013) 1340013 [arXiv:1302.2579] [INSPIRE].
4. STAR collaboration, Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [INSPIRE].
5. PHENIX collaboration, Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [INSPIRE].
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献