A coherent view of the quark-gluon plasma from energy correlators

Author:

Andres Carlota,Dominguez Fabio,Holguin JackORCID,Marquet Cyrille,Moult Ian

Abstract

Abstract The ability to measure detailed aspects of the substructure of high-energy jets traversing the quark-gluon plasma (QGP) has provided a new window into its internal dynamics. However, drawing robust conclusions from traditional jet substructure observables has been difficult. In this manuscript we expand on a new approach to jet substructure in heavy-ion collisions based on the study of correlation functions of energy flow operators (energy correlators). We compute the two-point energy correlator of an in-medium massless quark jet and perform a detailed numerical analysis of the produced spectra. Our calculation incorporates vacuum radiation resummed at next-to-leading log accuracy together with the leading order contribution in medium-induced splittings evaluated through the BDMPS-Z multiple scattering and GLV single scattering formalisms for a static brick of QGP. Our analysis demonstrates how particular features of the modifications of in-medium splittings are imprinted in the correlator spectra, particularly showing how energy correlators may be used to extract the onset of colour coherence. We further present a comprehensive discussion on the accuracy and limitations of our study emphasizing how it can be systematically improved. This work sets the foundations for a rich program studying energy correlators in heavy-ion collisions.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A formalism for extracting track functions from jet measurements;Journal of High Energy Physics;2024-01-31

2. Jet quenching in anisotropic flowing matter;Physical Review D;2024-01-29

3. QCD factorization from light-ray OPE;Journal of High Energy Physics;2024-01-09

4. Probing the Short-Distance Structure of the Quark-Gluon Plasma with Energy Correlators;Physical Review Letters;2024-01-02

5. Energy correlators on tracks: resummation and non-perturbative effects;Journal of High Energy Physics;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3