The Weak Gravity Conjecture and axion strings

Author:

Heidenreich BenORCID,Reece Matthew,Rudelius Tom

Abstract

Abstract Strong (sublattice or tower) formulations of the Weak Gravity Conjecture (WGC) imply that, if a weakly coupled gauge theory exists, a tower of charged particles drives the theory to strong coupling at an ultraviolet scale well below the Planck scale. This tower can consist of low-spin states, as in Kaluza-Klein theory, or high-spin states, as with weakly-coupled strings. We provide a suggestive bottom-up argument based on the mild p-form WGC that, for any gauge theory coupled to a fundamental axion through a θFF term, the tower is a stringy one. The charge-carrying string states at or below the WGC scale gMPl are simply axion strings for θ, with charged modes arising from anomaly inflow. Kaluza-Klein theories evade this conclusion and postpone the appearance of high-spin states to higher energies because they lack a θFF term. For abelian Kaluza-Klein theories, modified arguments based on additional abelian groups that interact with the Kaluza-Klein gauge group sometimes pinpoint a mass scale for charged strings. These arguments reinforce the Emergent String and Distant Axionic String Conjectures. We emphasize the unproven assumptions and weak points of the arguments, which provide interesting targets for further work. In particular, a sharp characterization of when gauge fields admit θFF couplings and when they do not would be immensely useful for particle phenomenology and for clarifying the implications of the Weak Gravity Conjecture.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Introduction to the Weak Gravity Conjecture;Contemporary Physics;2024-09-02

2. Cosmological dynamics of string theory axion strings;Physical Review D;2024-08-19

3. The minimal weak gravity conjecture;Journal of High Energy Physics;2024-05-24

4. Zero modes of massive fermions delocalize from axion strings;Journal of High Energy Physics;2024-05-08

5. Compact scalars at the cosmological collider;Journal of High Energy Physics;2024-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3