Abstract
Abstract
We compute the next-to-leading order impact factor for inclusive dijet production in deeply inelastic electron-nucleus scattering at small xBj. Our computation, performed in the framework of the Color Glass Condensate effective field theory, includes all real and virtual contributions in the gluon shock wave background of all-twist lightlike Wilson line correlators. We demonstrate explicitly that the rapidity evolution of these correlators, to leading logarithmic accuracy, is described by the JIMWLK Hamiltonian. When combined with the next-to-leading order JIMWLK Hamiltonian, our results for the impact factor improve the accuracy of the inclusive dijet cross-section to $$ \mathcal{O} $$
O
($$ {\alpha}_s^2 $$
α
s
2
ln(xf/xBj)), where xf is a rapidity factorization scale. These results are an essential ingredient in assessing the discovery potential of inclusive dijets to uncover the physics of gluon saturation at the Electron-Ion Collider.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference107 articles.
1. H. Abramowicz and A. Caldwell, HERA collider physics, Rev. Mod. Phys. 71 (1999) 1275 [hep-ex/9903037] [INSPIRE].
2. L.V. Gribov, E.M. Levin and M.G. Ryskin, Semihard processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].
3. A.H. Mueller and J.-W. Qiu, Gluon recombination and shadowing at small values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].
4. A. Accardi et al., Electron ion collider: the next QCD frontier. Understanding the glue that binds us all, Eur. Phys. J. A 52 (2016) 268 [arXiv:1212.1701] [INSPIRE].
5. E.C. Aschenauer et al., The electron-ion collider: assessing the energy dependence of key measurements, Rept. Prog. Phys. 82 (2019) 024301 [arXiv:1708.01527] [INSPIRE].
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献