Author:
Bishara Fady,Brod Joachim,Grinstein Benjamin,Zupan Jure
Abstract
Abstract
We provide expressions for the nonperturbative matching of the effective field theory describing dark matter interactions with quarks and gluons to the effective theory of nonrelativistic dark matter interacting with nonrelativistic nucleons. We give expressions of leading and subleading order in chiral counting. In general, a single partonic operator matches onto several nonrelativistic operators already at leading order in chiral counting. Keeping only one operator at the time in the nonrelativistic effective theory thus does not properly describe the scattering in direct detection. The matching of the axial-axial partonic level operator, as well as the matching of the operators coupling DM to the QCD anomaly term, include naively momentum suppressed terms. However, these are still of leading chiral order due to pion poles and can be numerically important.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference87 articles.
1. F. Bishara, J. Brod, B. Grinstein and J. Zupan, Chiral Effective Theory of Dark Matter Direct Detection, JCAP 02 (2017) 009 [arXiv:1611.00368] [INSPIRE].
2. J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP 11 (2010) 042 [arXiv:1008.1591] [INSPIRE].
3. A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The Effective Field Theory of Dark Matter Direct Detection, JCAP 02 (2013) 004 [arXiv:1203.3542] [INSPIRE].
4. A.L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, Model Independent Direct Detection Analyses, arXiv:1211.2818 [INSPIRE].
5. N. Anand, A.L. Fitzpatrick and W.C. Haxton, Weakly interacting massive particle-nucleus elastic scattering response, Phys. Rev. C 89 (2014) 065501 [arXiv:1308.6288] [INSPIRE].
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献