Aspects of univalence in holographic axion models

Author:

Baggioli MatteoORCID,Grieninger SebastianORCID,Grozdanov Sašo,Lu Zhenkang

Abstract

Abstract Univalent functions are complex, analytic (holomorphic) and injective functions that have been widely discussed in complex analysis. It was recently proposed that the stringent constraints that univalence imposes on the growth of functions combined with sufficient analyticity conditions could be used to derive rigorous lower and upper bounds on hydrodynamic dispersion relation, i.e., on all terms appearing in their convergent series representations. The results are exact bounds on physical quantities such as the diffusivity and the speed of sound. The purpose of this paper is to further explore these ideas, investigate them in concrete holographic examples, and work towards a better intuitive understanding of the role of univalence in physics. More concretely, we study diffusive and sound modes in a family of holographic axion models and offer a set of observations, arguments and tests that support the applicability of univalence methods for bounding physical observables described in terms of effective field theories. Our work provides insight into expected ‘typical’ regions of univalence, comparisons between the tightness of bounds and the corresponding exact values of certain quantities characterising transport, tests of relations between diffusion and bounds that involve chaotic pole-skipping, as well as tests of a condition that implies the conformal bound on the speed of sound and a complementary condition that implies its violation.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3