Author:
Berenstein David,Miller Alexandra
Abstract
Abstract
We show that superpositions of classical states in quantum gravity with fixed topology can lead to new classical states with a different topology. We study this phenomenon in a particular limit of the LLM geometries. In this limit, the UV complete minisuperspace of allowed quantum states is exactly given by the Hilbert space of a free chiral boson in two dimensions. We construct this chiral boson purely in terms of combinatorial objects associated with the permutation group. As a byproduct of this analysis, we rederive the Murnaghan-Nakayama rule for characters of the permutation group. We are able to express this rule in terms of operator relations for raising and lowering operators on the Hilbert space of states in a free fermion basis. Our construction provides a preferred notion of bulk locality by studying an appropriate notion of D-brane state generating functions. We describe how multi-droplet LLM geometries with different topologies give new classical limits of the free chiral boson, even though they can be written as superpositions of coherent states with trivial topology. As a consequence, topology cannot be accessed by a single operator measurement in this quantum system. We study other non-linear measurements in the quantum wave-function, based on uncertainty and entanglement between modes of the chiral boson, that can be used as order parameters to measure the topology of such states.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference68 articles.
1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].
2. S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
3. A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].
4. J.A. Wheeler, Geometrodynamics and the issue of final state, in Relativity, groups and topology, C. De Witt and B. DeWitt eds., Gordon and Breach, New York U.S.A., (1964) [INSPIRE].
5. S.W. Hawking, Space-time foam, Nucl. Phys. B 144 (1978) 349 [INSPIRE].
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献