Abstract
Abstract
We study the matrix quantum mechanics of two free hermitian N × N matrices subject to a singlet constraint in the microcanonical ensemble. This is the simplest example of a theory that at large N has a confinement/deconfinement transition. In the microcanonical ensemble, it also exhibits partial deconfinement with a Hagedorn density of states. We argue that the entropy of these configurations, based on a combinatorial counting of Young diagrams, are dominated by Young diagrams that have the VKLS shape. When the shape gets to the maximal depth allowed for a Young diagram of SU(N), namely N, we argue that the system stops exhibiting the Hagedorn behavior. The number of boxes (energy) at the transition is N2/4, independent of the charge of the state.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference46 articles.
1. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].
2. S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-De Sitter Space, Commun. Math. Phys. 87 (1983) 577 [INSPIRE].
3. B. Sundborg, The Hagedorn transition, deconfinement and N = 4 SYM theory, Nucl. Phys. B 573 (2000) 349 [hep-th/9908001] [INSPIRE].
4. O. Aharony et al., The Hagedorn-deconfinement phase transition in weakly coupled large N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].
5. T. Harmark and M. Wilhelm, Hagedorn Temperature of AdS5/CFT4 via Integrability, Phys. Rev. Lett. 120 (2018) 071605 [arXiv:1706.03074] [INSPIRE].
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献