Abstract
Abstract
We examine the complexity of quasi-static chaotic open quantum systems. As a prototypical example, we analytically compute the Krylov complexity of a slowly leaking hard-sphere gas using Berry’s conjecture. We then connect it to the holographic complexity of a d + 1-dimensional evaporating black hole using the Complexity=Volume proposal. We model the black hole spacetime by stitching together a sequence of static Schwarzschild patches across incoming negative energy null shock waves. Under certain identification of parameters, we find the late time complexity growth rate during each quasi-static equilibrium to be the same in both systems.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献