Improved cost-sensitive multikernel learning support vector machine algorithm based on particle swarm optimization in pulmonary nodule recognition

Author:

Li Yang,Chang Jiayue,Tian Ying

Abstract

AbstractIn the lung computer-aided detection (Lung CAD) system, the region of interest (ROI) of lung nodules has more false positives, making the imbalance between positive and negative (true positive and false positive) samples more likely to lead to misclassification of true positive nodules, a cost-sensitive multikernel learning support vector machine (CS-MKL-SVM) algorithm is proposed. Different penalty coefficients are assigned to positive and negative samples, so that the model can better learn the features of true positive nodules and improve the classification effect. To further improve the detection rate of pulmonary nodules and overall recognition accuracy, a score function named F-new based on the harmonic mean of accuracy (ACC) and sensitivity (SEN) is proposed as a fitness function for subsequent particle swarm optimization (PSO) parameter optimization, and a feasibility analysis of this function is performed. Compared with the fitness function that considers only accuracy or sensitivity, both the detection rate and the recognition accuracy of pulmonary nodules can be improved by this new algorithm. Compared with the grid search algorithm, using PSO for parameter search can reduce the model training time by nearly 20 times and achieve rapid parameter optimization. The maximum F-new obtained on the test set is 0.9357 for the proposed algorithm. When the maximum value of F-new is achieved, the corresponding recognition ACC is 91%, and SEN is 96.3%. Compared with the radial basis function in the single kernel, the F-new of the algorithm in this paper is 2.16% higher, ACC is 1.00% higher and SEN is equal. Compared with the polynomial kernel function in the single kernel, the F-new of the algorithm is 3.64% higher, ACC is 1.00% higher and SEN is 7.41% higher. The experimental results show that the F-new, ACC and SEN of the proposed algorithm is the best among them, and the results obtained by using multikernel function combined with F-new index are better than the single kernel function. Compared with the MKL-SVM algorithm of grid search, the ACC of the algorithm in this paper is reduced by 1%, and the results are equal to those of the MKL-SVM algorithm based on PSO only. Compared with the above two algorithms, SEN is increased by 3.71% and 7.41%, respectively. Therefore, it can be seen that the cost sensitive method can effectively reduce the missed detection of nodules, and the availability of the new algorithm can be further verified.

Funder

jilin scientific and technological development program

National Natural Science Foundation of China

Education Department of Jilin Province

health research talents special project of jilin province

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3