Affiliation:
1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
Abstract
Surface defects generated during the production process of steel balls can lead to bearing failures, which makes it crucial to promptly detect and classify these defects. Defects classify is helpful for analysis and improving the production process. An algorithm that incorporates K-fold cross-validation (K-CV) with improved grid search is proposed to optimize the parameters of SVM, in order to detect surface defects with steel balls. Principal Component Analysis (PCA) was employed to reduce the dimensionality of the effective features data. The K-CV algorithm was employed in conjunction with an improved grid search method to find the optimal parameters “c” and “g.” This approach not only reduced the search time but also diminished the influence of individual samples on the model, thereby enhancing its robustness and ultimately improving the classification accuracy. The model’s performance was evaluated using a confusion matrix, and a comparison was made with three other machine learning models. The experimental results demonstrated the effectiveness of the proposed algorithm in classifying defects on highly reflective metal surfaces such as steel balls. The model achieved a classification accuracy of 97.15%.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Learning-Based Approach for Automated Surface Inspection with Industrial Tomography Imaging;Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems;2024-05-24