Generalized support vector machines (GSVMs) model for real-world time series forecasting
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Link
https://link.springer.com/content/pdf/10.1007/s00500-021-06189-z.pdf
Reference48 articles.
1. Ahmadi M, Khashei M (2021) Current status of hybrid structures in wind forecasting. Eng Appl Artif Intell 99:104133
2. Azimi R, Ghofrani M, Ghayekhloo M (2016) A hybrid wind power forecasting model based on data mining and wavelets analysis. Energy Convers Manage 127:208–225
3. Chen K, Jie Yu (2014) Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach. Appl Energy 113:690–705
4. Chen Y, Heb Z, Shang Z, Li C, Li L, Xua M (2019) A novel combined model based on echo state network for multi-step ahead wind speed forecasting: a case study of NREL. Energy Convers Manag 179:13–29
5. Chuanjin Yu, Li Y, Bao Y, Tang H, Zhai G (2018) A novel framework for wind speed prediction based on recurrent neural networks and support vector machine. Energy Convers Manag 178:137–145
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research progress of inland river water quality monitoring technology based on unmanned aerial vehicle hyperspectral imaging technology;Environmental Research;2024-09
2. Evaluation Method of Higher Education Teaching Reform Based on Deep Learning Analysis Technology;International Journal of Web-Based Learning and Teaching Technologies;2024-02-13
3. Influence of cost/loss functions on classification rate: A comparative study across diverse classifiers and domains;Engineering Applications of Artificial Intelligence;2024-02
4. An Efficient Solution for Multivariate Time Series Forecasting Based on a Stacked Complex Fuzzy Gated Recurrent Neural Network;IEEE Access;2024
5. An intuitionistic fuzzy grey-Markov method with application to demand forecasting for emergency supplies during major epidemics;Grey Systems: Theory and Application;2023-11-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3