Three empirical studies on predicting software maintainability using ensemble methods
Author:
Publisher
Springer Science and Business Media LLC
Subject
Geometry and Topology,Theoretical Computer Science,Software
Link
http://link.springer.com/content/pdf/10.1007/s00500-014-1576-2.pdf
Reference54 articles.
1. Ahmed M, Al-Jamimi H (2013) Machine learning approaches for predicting software maintainability: a fuzzy-based transparent model. IET Softw 7(6):317–326
2. Al-Dallal J (2013) Object-oriented class maintainability prediction using internal quality attributes. Inf Softw Technol 55:2028–2048
3. Aljamaan H, Elish M (2009) An empirical study of bagging and boosting ensembles for identifying faulty classes in object-oriented software. In: IEEE symposium on computational intelligence and data mining, pp 187–194
4. Aljamaan H, Elish M, Ahmad I (2013) An ensemble of computational intelligence models for software maintenance effort prediction. In: 12th International work conference on artificial neural networks (IWANN 2013), part I, LNCS 7902, pp 592–603
5. Bandi R, Vaishnavi V, Turk D (2003) Predicting maintenance performance using object-oriented design complexity metrics. IEEE Trans Softw Eng 29(1):77–87
Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deriving change-prone thresholds from software evolution using ROC curves;The Journal of Supercomputing;2024-07-20
2. COMBINING ALTERNATIVE OPTIONS OF THE REGRESSION MODEL BASED ON THE BEHAVIOR CONSISTENCY CRITERION;Vestnik Chuvashskogo universiteta;2024-06-25
3. An assessment of heterogenous ensemble classifiers for analyzing change‐proneness in open‐source software systems;Journal of Software: Evolution and Process;2024-02-24
4. Machine learning based software effort estimation using development-centric features for crowdsourcing platform;Intelligent Data Analysis;2023-11-30
5. An Investigation on the Use of Heterogeneous Ensemble Machine Learning in Predicting Two Measures of Software Maintainability;2023 International Conference on Decision Aid Sciences and Applications (DASA);2023-09-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3