Machine learning based software effort estimation using development-centric features for crowdsourcing platform

Author:

Yasmin Anum1,Haider Wasi1,Daud Ali23,Banjar Ameen3

Affiliation:

1. Department of Computer and Software Engcineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan

2. Abu Dhabi School of Management, Abu Dhabi, United Arab Emirates

3. Department of Information systems and Technology, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia

Abstract

Crowd-Sourced software development (CSSD) is getting a good deal of attention from the software and research community in recent times. One of the key challenges faced by CSSD platforms is the task selection mechanism which in practice, contains no intelligent scheme. Rather, rule-of-thumb or intuition strategies are employed, leading to biasness and subjectivity. Effort considerations on crowdsourced tasks can offer good foundation for task selection criteria but are not much investigated. Software development effort estimation (SDEE) is quite prevalent domain in software engineering but only investigated for in-house development. For open-sourced or crowdsourced platforms, it is rarely explored. Moreover, Machine learning (ML) techniques are overpowering SDEE with a claim to provide more accurate estimation results. This work aims to conjoin ML-based SDEE to analyze development effort measures on CSSD platform. The purpose is to discover development-oriented features for crowdsourced tasks and analyze performance of ML techniques to find best estimation model on CSSD dataset. TopCoder is selected as target CSSD platform for the study. TopCoder’s development tasks data with development-centric features are extracted, leading to statistical, regression and correlation analysis to justify features’ significance. For effort estimation, 10 ML families with 2 respective techniques are applied to get broader aspect of estimation. Five performance metrices (MSE, RMSE, MMRE, MdMRE, Pred (25) and Welch’s statistical test are incorporated to judge the worth of effort estimation model’s performance. Data analysis results show that selected features of TopCoder pertain reasonable model significance, regression, and correlation measures. Findings of ML effort estimation depicted that best results for TopCoder dataset can be acquired by linear, non-linear regression and SVM family models. To conclude, the study identified the most relevant development features for CSSD platform, confirmed by in-depth data analysis. This reflects careful selection of effort estimation features to offer good basis of accurate ML estimate.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3