Simultaneous optimization of design and maintenance for systems using multi-objective evolutionary algorithms and discrete simulation

Author:

Cacereño AndrésORCID,Greiner DavidORCID,Galván Blas

Abstract

AbstractWhen projecting and building new industrial facilities, getting integrated design alternatives and maintenance strategies are of critical importance to achieve the physical assets optimal performance, which is needed to be competitive in the actual global markets. Coupling Evolutionary Algorithms with Discrete Event Simulation has been explored both in relation to systems design and their maintenance strategy. However, it was not simultaneously considered when both the corrective and the preventive maintenance—consisting of achieving the optimum period of time to carry out a preventive maintenance activity—are taken into account before being considered by the authors of the present paper. This work couples Multi-objective Evolutionary Algorithms with Discrete Event Simulation in order to enhance the knowledge and efficiency of the methodology presented, which consists of exploring and optimizing simultaneously systems design alternatives and their preventive maintenance strategies. The aim consists of finding the best set of non-dominated solutions by using the system availability (first maximized objective function) with taking into consideration associated operational cost (second minimized objective function), while automatically selecting the system devices. Each solution proposed by the Multi-Objective Evolutionary Algorithm is analyzed by using Discrete Event Simulation in a procedure that looks at the effect of including periodic preventive maintenance activities all along the mission time. An industrial application case study is solved, and a comparison of the performance of five state-of-the-art and three more recently developed Multi-objective Evolutionary Algorithms is handled; moreover, the gap in the literature reviewed about the analysis regarding the effect of the discrete event simulation sampling size is faced with useful insights about the synergies of Multi-objective Evolutionary Algorithms and Discrete Event Simulation. Finally, the methodology is expanded to more complex systems which are successfully solved.

Funder

Universidad de Las Palmas de Gran Canaria

Agencia Canaria de Investigación, Innovación y Sociedad de la Información

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3