DeepSIM: a novel deep learning method for graph similarity computation

Author:

Liu Bo,Wang Zhihan,Zhang Jidong,Wu Jiahui,Qu Guangzhi

Abstract

Abstract Graphs are widely used to model real-life information, where graph similarity computation is one of the most significant applications, such as inferring the properties of a compound based on similarity to a known group. Definition methods (e.g., graph edit distance and maximum common subgraph) have extremely high computational cost, and the existing efficient deep learning methods suffer from the problem of inadequate feature extraction which would have a bad effect on similarity computation. In this paper, a double-branch model called DeepSIM was raised to deeply mine graph-level and node-level features to address the above problems. On the graph-level branch, a novel embedding relational reasoning network was presented to obtain interaction between pairwise inputs. Meanwhile, a new local-to-global attention mechanism is designed to improve the capability of CNN-based node-level feature extraction module on another path. In DeepSIM, double-branch outputs will be concatenated as the final feature. The experimental results demonstrate that our methods perform well on several datasets compared to the state-of-the-art deep learning models in related fields. Graphical abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3