Learning-Based Efficient Graph Similarity Computation via Multi-Scale Convolutional Set Matching

Author:

Bai Yunsheng,Ding Hao,Gu Ken,Sun Yizhou,Wang Wei

Abstract

Graph similarity computation is one of the core operations in many graph-based applications, such as graph similarity search, graph database analysis, graph clustering, etc. Since computing the exact distance/similarity between two graphs is typically NP-hard, a series of approximate methods have been proposed with a trade-off between accuracy and speed. Recently, several data-driven approaches based on neural networks have been proposed, most of which model the graph-graph similarity as the inner product of their graph-level representations, with different techniques proposed for generating one embedding per graph. However, using one fixed-dimensional embedding per graph may fail to fully capture graphs in varying sizes and link structures—a limitation that is especially problematic for the task of graph similarity computation, where the goal is to find the fine-grained difference between two graphs. In this paper, we address the problem of graph similarity computation from another perspective, by directly matching two sets of node embeddings without the need to use fixed-dimensional vectors to represent whole graphs for their similarity computation. The model, Graph-Sim, achieves the state-of-the-art performance on four real-world graph datasets under six out of eight settings (here we count a specific dataset and metric combination as one setting), compared to existing popular methods for approximate Graph Edit Distance (GED) and Maximum Common Subgraph (MCS) computation.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DBStorm: Generating Various Effective Workloads for Testing Isolation Levels;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. Self-restrained contrastive enhanced network for graph structure learning;Expert Systems with Applications;2024-09

3. A Graph-Based Neural Approach to Linear Sum Assignment Problems;International Journal of Neural Systems;2024-01-17

4. Contrastive Graph Similarity Networks;ACM Transactions on the Web;2024-01-08

5. Grasp: Simple Yet Effective Graph Similarity Predictions;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3