H3 K27M mutation in rosette-forming glioneuronal tumors: a potential diagnostic pitfall
-
Published:2024-01-17
Issue:
Volume:
Page:
-
ISSN:0945-6317
-
Container-title:Virchows Archiv
-
language:en
-
Short-container-title:Virchows Arch
Author:
Marastoni Elena, Ammendola Serena, Rossi Sabrina, Giovannoni Isabella, Broggi Giuseppe, Masotto Barbara, Feletti Alberto, Barresi ValeriaORCID
Abstract
AbstractAccording to the fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS), diffuse midline glioma H3 K27-altered is a grade 4 infiltrative glioma that arises from midline anatomical structures and is characterized by the loss of H3 K27me3 and co-occurring H3 K27M mutation or EZHIP overexpression. However, the H3 K27M mutation has also been observed in circumscribed gliomas and glioneuronal tumors arising in midline anatomical structures, which may result in diagnostic pitfalls.Rosette-forming glioneuronal tumor (RGNT) is a CNS WHO grade 1 neoplasm that histologically features neurocytic and glial components and originates in midline anatomical structures.This study aimed to assess whether RGNTs, similar to other midline tumors, may exhibit immunohistochemical loss of H3 K27me3 and harbor the H3 K27M mutation.All seven analyzed RGNTs displayed immunohistochemical loss of H3 K27me3 in all tumor cells or H3 K27me3 mosaic immunostaining. In one case, H3 K27me3 loss was associated with the H3 K27M mutation, whereas the other six cases did not exhibit any H3 mutations or EZHIP overexpression. During a follow-up period of 23 months, the H3 K27M-mutant case remained unchanged in size despite partial resection, indicating that the H3 mutation may not confer higher biological aggressiveness to RGNT.The immunohistochemical loss of H3 K27me3 co-occurring with the H3 K27M mutation may result in the potential misdiagnosis of RGNT, especially in cases of small biopsy specimens consisting of only the glial component.
Funder
Università degli Studi di Verona
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Varlet P, Ellison DW, Solomon DA, Suvà ML, Baker SJ, Jabado N, Jones DTW, Jones C, Orr BA, Warren KE, Leske H (2021) Diffuse midline glioma, H3 K27-altered. In: Hawkins C, Pfister SM (eds) Central Nervous System Tumours. International Agencgy for Research on Cancer, Lyon 2. Gilbert AR, Zaky W, Gokden M, Fuller CE, Ocal E, Leeds NE, Fuller GN (2018) Extending the neuroanatomic territory of diffuse midline glioma, K27M mutant: pineal region origin. Pediatr Neurosurg 53:59–63. https://doi.org/10.1159/000481513 3. Meyronet D, Esteban-Mader M, Bonnet C, Joly MO, Uro-Coste E, Amiel-Benouaich A, Forest F, Rousselot-Denis C, Burel-Vandenbos F, Bourg V, Guyotat J, Fenouil T, Jouvet A, Honnorat J, Ducray F (2017) Characteristics of H3 K27M-mutant gliomas in adults. Neuro Oncol 19:1127–1134. https://doi.org/10.1093/neuonc/now274 4. Roux A, Pallud J, Saffroy R, Edjlali-Goujon M, Debily MA, Boddaert N, Sanson M, Puget S, Knafo S, Adam C, Faillot T, Cazals-Hatem D, Mandonnet E, Polivka M, Dorfmuller G, Dauta A, Desplanques M, Gareton A, Pages M et al (2020) High-grade gliomas in adolescents and young adults highlight histomolecular differences from their adult and pediatric counterparts. Neuro Oncol 22:1190–1202. https://doi.org/10.1093/neuonc/noaa024 5. Solomon DA, Wood MD, Tihan T, Bollen AW, Gupta N, Phillips JJ, Perry A (2016) Diffuse midline gliomas with histone H3-K27M mutation: a series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathol 26:569–580. https://doi.org/10.1111/bpa.12336
|
|