Understanding the MiniBooNE and the muon and electron g − 2 anomalies with a light Z′ and a second Higgs doublet

Author:

Abdallah Waleed,Gandhi Raj,Roy Samiran

Abstract

Abstract Two of the most widely studied extensions of the Standard Model (SM) are a) the addition of a new U(1) symmetry to its existing gauge groups, and b) the expansion of its scalar sector to incorporate a second Higgs doublet. We show that when combined, they allow us to understand the electron-like event excess seen in the MiniBooNE (MB) experiment as well as account for the observed anomalous values of the muon magnetic moment. A light Z′ associated with an additional U(1) coupled to baryons and to the dark sector, with flavor non-universal couplings to leptons, in conjunction with a second Higgs doublet is capable of explaining the MB excess. The Z′ obtains its mass from a dark singlet scalar, which mixes with the two Higgs doublets. Choosing benchmark parameter values, we show that $$ \mathrm{U}{(1)}_{B-3{L}_{\tau }} $$ U 1 B 3 L τ , which is anomaly-free, and U(1)B, both provide (phenomenologically) equally good solutions to the excess. We also point out the other (anomaly-free) U(1) choices that may be possible upon fuller exploration of the parameter space. We obtain very good matches to the energy and angular distributions for neutrinos and anti-neutrinos in MB. The extended Higgs sector has two light CP-even scalars, h′ and H , and their masses and couplings are such that in principle, both contribute to help explain the MB excess as well as the present observed values of the muon and electron g − 2. We discuss the constraints on our model as well as future tests. Our work underlines the role that light scalars may play in understanding present-day low-energy anomalies. It also points to the possible existence of portals to the dark sector, i.e., a light gauge boson field (Z′) and a dark neutrino which mixes with the active neutrinos, as well as a dark sector light scalar which mixes with the extended Higgs sector.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3