Abstract
Abstract
We study towers of light particles that appear in infinite-distance limits of moduli spaces of 9-dimensional $$ \mathcal{N} $$
N
= 1 string theories, some of which notably feature decompactification limits with running string coupling. The lightest tower in such decompactification limits consists of the non-BPS Kaluza-Klein modes of Type I′ string theory, whose masses depend nontrivially on the moduli of the theory. We work out the moduli-dependence by explicit computation, finding that despite the running decompactification the Distance Conjecture remains satisfied with an exponential decay rate $$ \alpha \ge 1/\sqrt{d-2} $$
α
≥
1
/
d
−
2
in accordance with the sharpened Distance Conjecture. The related sharpened Convex Hull Scalar Weak Gravity Conjecture also passes stringent tests. Our results non-trivially test the Emergent String Conjecture, while highlighting the important subtlety that decompactifcation can lead to a running solution rather than to a higher-dimensional vacuum.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献