Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Theory and Mathematics,Computer Networks and Communications
Reference33 articles.
1. Berger, T.P., Canteaut, A., Charpin, P., Laigle-Chapuy, Y.: On almost perfect nonlinear functions over $\mathbb {F}_{2^{n}}$. IEEE Trans. Inf. Theor. 52(9), 4160–4170 (2006)
2. Bracken, C., Byrne, E., Markin, N., McGuire, G.: On the Walsh spectrum of a new APN function. In: S.D. Galbraith (ed.) Cryptography and Coding, 11th IMA International Conference, Cirencester, Proceedings, Lecture Notes in Computer Science, vol. 4887, pp. 92–98. Springer (2007)
3. Bracken, C., Byrne, E., Markin, N., McGuire, G.: New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields Appl 14(3), 703–714 (2008)
4. Bracken, C., Byrne, E., Markin, N., McGuire, G.: A few more quadratic APN functions. Cryptography and Communications 3(1), 43–53 (2011)
5. Browning, K., Dillon, J., Kibler, R., McQuistan, M.: APN polynomials and related codes. J. Comb. Inf. Syst. Sci. 34(1-4), 135–159 (2009)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Extending two families of bivariate APN functions;Finite Fields and Their Applications;2023-06
2. Recovering or Testing Extended-Affine Equivalence;IEEE Transactions on Information Theory;2022-09
3. Biprojective Almost Perfect Nonlinear Functions;IEEE Transactions on Information Theory;2022-07
4. Triplicate functions;Cryptography and Communications;2022-05-20
5. Invariants for EA- and CCZ-equivalence of APN and AB functions;Cryptography and Communications;2021-10-22