Abstract
AbstractFor an (imaginary) hyperelliptic curve $$\mathcal {H}$$
H
of genus g, with a Weierstrass point $$\Omega $$
Ω
, taken as the point at infinity, we determine a basis of the Riemann-Roch space $$\mathcal {L}(\Delta + m \Omega )$$
L
(
Δ
+
m
Ω
)
, where $$\Delta $$
Δ
is of degree zero, directly from the Mumford representation of $$\Delta $$
Δ
. This provides in turn a generating matrix of a Goppa code.
Funder
Università degli Studi di Palermo
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. de Boer, M.A.: The generalized Hamming weights of some hyperelliptic codes. J. Pure Appl. Algebra 123, 153–163 (1998)
2. von Brill, A., Noether, M.: Über die algebraischen Functionen und ihre Anwendung in der Geometrie. Math. Annalen 7, 269–316 (1874)
3. Cantor, D.G.: Computing in the Jacobian of a Hyperelliptic Curve. Math. Comp. 48, 95–101 (1987)
4. Falcone, G., Figula, Á., Hannusch, C.: On the generating matrices of Goppa codes over hyperelliptic curves. J. Ramanujan Math. Soc. 37(3), 273–279 (2022)
5. Garzón, A.(CL-VAL), Navarro, H.(CL-VAL): Bases of Riemann-Roch spaces from Kummer extensions and algebraic geometry codes. (English summary) Finite Fields Appl. 80, Paper No. 102025, 19 pp. (2022)