The MIP Workshop 2023 Computational Competition on reoptimization

Author:

Bolusani SureshORCID,Besançon MathieuORCID,Gleixner AmbrosORCID,Berthold TimoORCID,D’Ambrosio ClaudiaORCID,Muñoz GonzaloORCID,Paat JosephORCID,Thomopulos DimitriORCID

Abstract

AbstractThis paper describes the computational challenge developed for a computational competition held in 2023 for the $$20{\text {th}}$$ 20 th anniversary of the Mixed Integer Programming Workshop. The topic of this competition was reoptimization, also known as warm starting, of mixed integer linear optimization problems after slight changes to the input data for a common formulation. The challenge was to accelerate the proof of optimality of the modified instances by leveraging the information from the solving processes of previously solved instances, all while creating high-quality primal solutions. Specifically, we discuss the competition’s format, the creation of public and hidden datasets, and the evaluation criteria. Our goal is to establish a methodology for the generation of benchmark instances and an evaluation framework, along with benchmark datasets, to foster future research on reoptimization of mixed integer linear optimization problems.

Funder

Hochschule für Technik und Wirtschaft Berlin

Publisher

Springer Science and Business Media LLC

Reference30 articles.

1. MIP computational competition 2023. https://github.com/ambros-gleixner/MIPcc23/. Accessed: 1 Jun 2024 (2023)

2. MIP computational competition 2023 dataset generation scripts. https://github.com/sbolusani/MILP-WS-Lib. Accessed: 1 Jun 2024 (2023)

3. Mixed integer programming workshop series. https://www.mixedinteger.org/#mipworkshops

4. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 361–372 (2006). https://doi.org/10.1016/j.orl.2005.07.009

5. Andréassian, V., Delaigue, O., Perrin, C., Janet, B., Addor, N.: CAMELS-FR: A large sample, hydroclimatic dataset for france, to support model testing and evaluation. In: EGU General Assembly Conference Abstracts (2021). https://doi.org/10.5194/egusphere-egu21-13349

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3