CAMELS-FR: A large sample, hydroclimatic dataset for France, to support model testing and evaluation

Author:

Andréassian VazkenORCID,Delaigue OlivierORCID,Perrin Charles,Janet Bruno,Addor NansORCID

Abstract

<p>Over the last decades, the development of large sample hydrology has allowed a generalization of sound model evaluation and testing practices (Andréassian et al., 2006; Gupta et al. 2014), based on various types of split-sample tests. This presentation aims at illustrating some of these tests, while introducing at the same time a French dataset that we have been working with for many years. This dataset has been assembled at INRAE (HYCAR research unit), based on an automatized assembling of national data products (Delaigue et al. 2020). CAMELS-FR will provide daily hydro-meteorological time series (streamflow, solid and liquid precipitation, potential evapotranspiration, temperature, etc.) covering the 1958-2020 period. Catchment characteristics such as land cover, topography (i.e. elevation and slope distributions, drainage density, topographic index, etc.) will be provided, with information about possible regulations upstream, and with some a priori information on data quality. Graphical summary sheets for each catchment are already available.</p><p>This approach is part of the CAMELS international initiative (Addor et al., 2017), whose purpose is to facilitate reproducible hydrological research by the use of large sample catchment datasets, and the CAMELS-FR dataset will be made available to scientific users in partnership with data owners.</p><p><strong>References</strong></p><p>Addor, N., Newman, A. J., Mizukami, N., Clark, M. P. (2017). The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017</p><p>Andréassian, V., Hall, A., Chahinian, N., Schaake, J. (2006). Introduction and Synthesis: Why should hydrologists work on a large number of basin data sets? IAHS Publication, 307, 1-5, https://hal.inrae.fr/hal-02588687.</p><p>Delaigue, O., Génot, B., Lebecherel, L., Brigode, P., Bourgin, P.Y. (2020). Database of watershed-scale hydroclimatic observations in France. Université Paris-Saclay, INRAE, HYCAR Research Unit, Hydrology group, Antony, https://webgr.inrae.fr/base-de-donnees.</p><p>Gupta, H.V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., Andréassian, V. (2014). Large-sample hydrology: A need to balance depth with breadth. Hydrology and Earth System Sciences, 18(2), 463–477, doi: https://doi.org/10.5194/hess-18-463-2014.</p>

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3