On technical debt in mathematical programming: An exploratory study

Author:

Vidoni Melina,Cunico Maria Laura

Abstract

AbstractThe Technical Debt (TD) metaphor describes development shortcuts taken for expediency that cause the degradation of internal software quality. It has served the discourse between engineers and management regarding how to invest resources in maintenance and extend into scientific software (both the tools, the algorithms and the analysis conducted with it). Mathematical programming has been considered ‘special purpose programming’, meant to program and simulate particular problem types (e.g., symbolic mathematics through Matlab). Likewise, more traditional mathematical programming has been considered ‘modelling programming’ to program models by providing programming structures required for mathematical formulations (e.g., GAMS, AMPL, AIMMS). Because of this, other authors have argued the need to consider mathematical programming as closely related to software development. As a result, this paper presents a novel exploration of TD in mathematical programming by assessing self-reported practices through a survey, which gathered 168 complete responses. This study discovered potential debts manifested through smells and attitudinal causes towards them. Results uncovered a trend to refactor and polish the final mathematical model and use version control and detailed comments. Nonetheless, we uncovered traces of negative practices regarding Code Debt and Documentation Debt, alongside hints indicating that most TD is deliberately introduced (i.e., modellers are aware that their practices are not the best). We aim to discuss the idea that TD is also present in mathematical programming and that it may hamper the reproducibility and maintainability of the models created. The overall goal is to outline future areas of work that can lead to changing current modellers’ habits and assist in extending existing mathematical programming (both practice and research) to eventually manage TD in mathematical programming.

Funder

Australian National University

Publisher

Springer Science and Business Media LLC

Subject

Software,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3