Multi-agent system application for music features extraction, meta-classification and context analysis
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software
Link
http://link.springer.com/content/pdf/10.1007/s10115-018-1319-2.pdf
Reference40 articles.
1. Bajo J, Corchado JM (2009) Thomas: practical applications of agents and multiagent systems. Springer, Berlin, pp 512–513. https://doi.org/10.1007/978-3-642-02478-8_64
2. Baniya BK, Ghimire D, Lee J (2015) Automatic music genre classification using timbral texture and rhythmic content features. In: International conference on advanced communication technology, ICACT, vol 2015-August. IEEE, pp 434–443. https://doi.org/10.1109/ICACT.2015.7224907
3. Bellifemine F, Poggi A, Rimassa G (2001) Developing multi-agent systems with JADE. Springer, Berlin, pp 89–103. https://doi.org/10.1007/3-540-44631-1_7
4. Bergstra J, Casagrande N, Erhan D, Eck D, Kégl B (2006) Aggregate features and ADABOOST for music classification. Mach Learn 65(2–3):473–484. https://doi.org/10.1007/s10994-006-9019-7
5. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140. https://doi.org/10.1023/A:1018054314350
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploration on Automatic Recommendation System for Video Background Music Based on Machine Learning;Lecture Notes on Data Engineering and Communications Technologies;2024
2. The Generation of Piano Music Using Deep Learning Aided by Robotic Technology;Computational Intelligence and Neuroscience;2022-10-10
3. Internet of agents system for age and gender classification using grasshopper optimization with deep convolution neural networks;Expert Systems;2022-08-02
4. Music Emotion Classification Method Based on Deep Learning and Explicit Sparse Attention Network;Computational Intelligence and Neuroscience;2022-06-21
5. Using Institutional Purposes to Enhance Openness of Multi-Agent Systems;Lecture Notes in Computer Science;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3