An experimental analysis on evolutionary ontology meta-matching

Author:

Ferranti NicolasORCID,de Souza Jairo FranciscoORCID,Sã Rosário Furtado Soares StênioORCID

Abstract

AbstractEvery year, new ontology matching approaches have been published to address the heterogeneity problem in ontologies. It is well known that no one is able to stand out from others in all aspects. An ontology meta-matcher combines different alignment techniques to explore various aspects of heterogeneity to avoid the alignment performance being restricted to some ontology characteristics. The meta-matching process consists of several stages of execution, and sometimes the contribution/cost of each algorithm is not clear when evaluating an approach. This article presents the evaluation of solutions commonly used in the literature in order to provide more knowledge about the ontology meta-matching problem. Results showed that the more characteristics of the entities that can be captured by similarity measures set, the greater the accuracy of the model. It was also possible to observe the good performance and accuracy of local search-based meta-heuristics when compared to global optimization meta-heuristics. Experiments with different objective functions have shown that semi-supervised methods can shorten the execution time of the experiment but, on the other hand, bring more instability to the result.

Funder

Vienna University of Economics and Business

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Hardware and Architecture,Human-Computer Interaction,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive Review of Population Based Metaheuristic Algorithms & Ontology Integration;2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE);2024-02-22

2. Solving Ontology Metamatching Problem through Improved Multiobjective Particle Swarm Optimization Algorithm;Wireless Communications and Mobile Computing;2022-11-22

3. Understanding the Impact of the Ontology of Semantic Web in Knowledge Representation: A Systematic Review;Recent Innovations in Artificial Intelligence and Smart Applications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3