Solving Ontology Metamatching Problem through Improved Multiobjective Particle Swarm Optimization Algorithm

Author:

Huang Yikun1ORCID,Zhuang Yucheng2ORCID,Xue Xingsi3ORCID

Affiliation:

1. Concord University College, Fujian Normal University, Fuzhou, Fujian 350117, China

2. School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou, Fujian 350118, China

3. Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, Fujian 350118, China

Abstract

In recent years, knowledge representation in the Artificial Intelligence (AI) domain is able to help people understand the semantics of data and improve the interoperability between diverse knowledge-based applications. Semantic Web (SW), as one of the methods of knowledge representation, is the new generation of World Wide Web (WWW), which integrates AI with web techniques and dedicates to implementing the automatic cooperations among different intelligent applications. Ontology, as an information exchange model that defines concepts and formally describes the relationships between two concepts, is the core technique of SW, implementing semantic information sharing and data interoperability in the Internet of Things (IoT) domain. However, the heterogeneity issue hampers the communications among different ontologies and stops the cooperations among ontology-based intelligent applications. To solve this problem, it is vital to establish semantic relationships between heterogeneous ontologies, which is the so-called ontology matching. Ontology metamatching problem is commonly a complex optimization problem with many local optima. To this end, the ontology metamatching problem is defined as a multiobjective optimization model in this work, and a multiobjective particle swarm optimization (MOPSO) with diversity enhancing (DE) (MOPSO-DE) strategy is proposed to better trade off the convergence and diversity of the population. The well-known benchmark of the Ontology Alignment Evaluation Initiative (OAEI) is used in the experiment to test MOPSO-DE’s performance. Experimental results prove that MOPSO-DE can obtain the high-quality alignment and reduce the MOPSO’s memory consumption.

Funder

Fujian Normal University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3