Improved constraints on effective top quark interactions using edge convolution networks

Author:

Atkinson Oliver,Bhardwaj Akanksha,Brown Stephen,Englert Christoph,Miller David J.,Stylianou PanagiotisORCID

Abstract

Abstract We explore the potential of Graph Neural Networks (GNNs) to improve the performance of high-dimensional effective field theory parameter fits to collider data beyond traditional rectangular cut-based differential distribution analyses. In this study, we focus on a SMEFT analysis of pp$$ t\overline{t} $$ t t ¯ production, including top decays, where the linear effective field deformation is parametrised by thirteen independent Wilson coefficients. The application of GNNs allows us to condense the multidimensional phase space information available for the discrimination of BSM effects from the SM expectation by considering all available final state correlations directly. The number of contributing new physics couplings very quickly leads to statistical limitations when the GNN output is directly employed as an EFT discrimination tool. However, a selection based on minimising the SM contribution enhances the fit’s sensitivity when reflected as a (non-rectangular) selection on the inclusive data samples that are typically employed when looking for non-resonant deviations from the SM by means of differential distributions.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Foundations of automatic feature extraction at LHC–point clouds and graphs;The European Physical Journal Special Topics;2024-09-11

2. Top-philic machine learning;The European Physical Journal Special Topics;2024-07-25

3. Collider sensitivity to SMEFT heavy-quark operators at one-loop in top-quark processes;Journal of High Energy Physics;2024-07-11

4. Interpretable deep learning models for the inference and classification of LHC data;Journal of High Energy Physics;2024-05-02

5. Constraints on the trilinear and quartic Higgs couplings from triple Higgs production at the LHC and beyond;The European Physical Journal C;2024-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3