Abstract
Abstract
We explore the potential of Graph Neural Networks (GNNs) to improve the performance of high-dimensional effective field theory parameter fits to collider data beyond traditional rectangular cut-based differential distribution analyses. In this study, we focus on a SMEFT analysis of pp → $$ t\overline{t} $$
t
t
¯
production, including top decays, where the linear effective field deformation is parametrised by thirteen independent Wilson coefficients. The application of GNNs allows us to condense the multidimensional phase space information available for the discrimination of BSM effects from the SM expectation by considering all available final state correlations directly. The number of contributing new physics couplings very quickly leads to statistical limitations when the GNN output is directly employed as an EFT discrimination tool. However, a selection based on minimising the SM contribution enhances the fit’s sensitivity when reflected as a (non-rectangular) selection on the inclusive data samples that are typically employed when looking for non-resonant deviations from the SM by means of differential distributions.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献