Laws of Large Numbers for Non-Homogeneous Markov Systems

Author:

Vassiliou P.-C. G.

Abstract

AbstractIn the present we establish Laws of Large Numbers for Non-Homogeneous Markov Systems and Cyclic Non-homogeneous Markov systems. We start with a theorem, where we establish, that for a NHMS under certain conditions, the fraction of time that a membership is in a certain state, asymptotically converges in mean square to the limit of the relative population structure of memberships in that state. We continue by proving a theorem which provides the conditions under which the mode of covergence is almost surely. We continue by proving under which conditions a Cyclic NHMS is Cesaro strongly ergodic. We then proceed to prove, that for a Cyclic NHMS under certain conditions the fraction of time that a membership is in a certain state, asymptotically converges in mean square to the limit of the relative population structure in the strongly Cesaro sense of memberships in that state. We then proceed to establish a founding Theorem, which provides the conditions under which, the relative population structure asymptotically converges in the strongly Cesaro sense with geometrical rate. This theorem is the basic instrument missing to prove, under what conditions the Law of Large Numbers for a Cycl-NHMS is with almost surely mode of convergence. Finally, we present two applications firstly for geriatric and stroke patients in a hospital and secondly for the population of students in a University system.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Statistics and Probability

Reference39 articles.

1. Bartholomew DJ (1963) A multistage renewal process. J R Stat Soc Soc B25:150–168

2. Bartholomew DJ (1967) Stochastic models for Social processes, 1st edn. Wiley, New York

3. Bartholomew DJ (1982) Stochastic models for Social processes, 3rd edn. Wiley, New York

4. Faddy M, McClean SI (2005) Markov chain modeling for geriartic patient care. Methods Archive 44(3):369–373

5. Foucher Y, Mathew E, Saint Pierre P, Durand J-F, Daures JP (2005) A semi-Markov model based on Weibull distribution with an illustration for HIV disease. Biometrical J 47(6):1–9

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3